Hubert Maehr, Joanne Smallheer, and Voldemar Toome

Chemical Research Department, Hoffmann-La Roche Inc., Nutley, New Jersey 07110
Received April 4, 1977

1,3-Dimethyl-1,2-dihydro-2-imino-4(3H)pyrimidinone (1,3-dimethylisocytosine) was prepared by methylation of 2-amino-3-methyl-4(3H)pyrimidinone and was degraded in alkaline solution to a mixture of 3-methyl-2-methylamino-4(3H)pyrimidinone, 1,3-dimethyl-2,4-(1H,3H)pyrimidindione, 2-methylamino-1-methyl-4(1H)pyrimidinone, 1-methyl-2,4-(1H,3H)pyrimidindione and 3-methyl-2,4-(1H,3H)pyrimidindione. Thiation of the title compound gave both 1,2-dihydro-1,3-dimethyl-2-thio-4(3H)pyrimidinone and 1,3-dimethyl-2,4-(1H,3H)pyrimidinedithione. The title compound is a tautomerically fixed pyrimidine and its uv spectra were compared with related compounds, notably 3-methyl-2-dimethylamino-4(3H)pyrimidinone which is also tautomerically fixed.

J. Heterocyclic Chem., 14, 687 (1977).

Whereas 1,3-dimethyl-3,4-dihydro-4-imino-2(1H)-pyrimidinone (1,3-dimethylcytosine) has been prepared by several routes (1), the isomeric 1,3-dimethyl-1,2-dihydro-2-imino-4(3H) pyrimidinone (1,3-dimethylisocytosine, 4) has not been previously described.

Methylation of 2-amino-4-hydroxypyrimidine with dimethyl sulfate in dilute sodium hydroxide solution was reported to give 2-amino-1-methyl-4(1H)pyrimidinone (1-methylisocytosine) as major and 2-amino-3-methyl-4-(3H) pyrimidinone (3-methylisocytosine, 1) as minor product, both characterized by hydrolysis in hot 1Nsodium hydroxide to 1-methyl-2,4-(1H,3H)pyrimidindione (1-methyluracil, 10) and 3-methyl-2,4-(1H,3H)pyrimidindione (3-methyluracil, 12), respectively (2). Similarly, methylation of 2-amino-4-hydroxypyrimidine with iodomethane, only possible in the presence of an equivalent of sodium methoxide, afforded 1- and 3-methylisocytosines (3). 3-Methylisocytosine (1) was also prepared by aminolysis of 2-methylthio-3-methyl-4(3H)pyrimidinone (2), a type of reaction suitable for the preparation of 2 and 3. Of the two latter compounds, 3 had been prepared previously by either methylation of 2-dimethylamino-4-hydroxypyrimidine after separation from the coproduced 2-dimethylamino-4methoxypyrimidine or thermal decomposition of 2-dimethylamino-1(or 3),4dihydro-1,3-dimethyl-4-oxopyridinium iodide (4a).

Treatment of 1 with iodomethane gave 4 hydroiodide, readily converted to the free base by passage through a column of Dowex 1 (OH form). The structure of 4 was originally suggested by its dissimilarity to 2 and was confirmed by its spectroscopic properties, thiation products, pK_a value and hydrolytic behavior.

The two signals for methyl groups in the ¹Hnmr spectrum of 4 were compatible with nuclear N-methyl groups and 4 was converted to the known monothioand dithio-1,3-dimethyluracils, 5 and 6, respectively (Table 1, Figure 3). Under the conditions chosen, the thiation of 4 proceeded to 6 via 5, apparently without the intermediacy of 1,3-dimethyl-1,2-dihydro-2-imino-4(3H)- pyrimidinethione (Scheme 1). The thiation of 1,3-dimethyluracil, by contrast, yields first the 4-thiopyrimidine 7, and the dithio derivative 6 is then formed under more vigorous reaction conditions.

Compounds 3 and 4 are tautomerically fixed 2-amino-and 2-imino-4-pyrimidinones, respectively. As shown in Figure 1, the uv spectra of the free bases (0.1 N potassium hydroxide) of 1, 2 and 3 are of similar shape, the successive replacement of hydrogen by methyl groups at the N^2 -position causing bathochromic shifts of the maxima. Similar bathochromic shifts are found upon successive N-methylations of aniline. The 2-imino tautomer 4, by comparison, exhibits a characteristically less intense long wavelength maximum and an increased maximum at 220 nm. A still further hypsochromically and hypochromically displaced long wavelength maximum can be noted for yet another tautomer, 9, whose low pK_a value suggests a preponderance of the 2-methylamino form.

Compound 3 is the weakest base (p K_a = 3.53) of the series, but the p K_a values of 2 (4.21) and 1 (4.40) are not much higher, precluding significant 2-imino character (4b). Similar decreases of basicities were noted upon methylation of the 4-amino group in the cytosine series, but successive methylation of the amino group in 2-amino-pyrimidine is slightly base-strengthening (5). Nuclear methylation of 3 gives rise to the tautomerically fixed

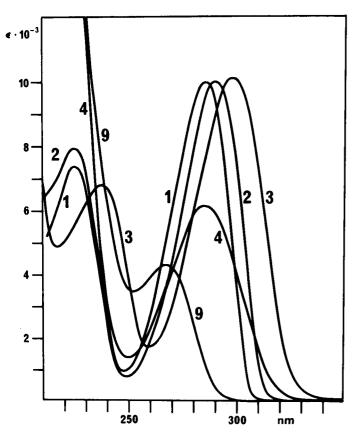


Figure 1. Uv Spectra of Various Uncharged Pyrimidines

2-imino-4-pyrimidinone (4) with a concomitant 7500 fold increase in base strength. Making allowance for the small spectral shifts due to N-methylations, the cationic species 1, 2, 3, 4 and 9 exhibit similar spectra suggesting a common resonant cation shown in Figure 2 (6).

Figure 2

Scheme 2

Remarkably, short treatment of 4 with barium hydroxide gave five products (Scheme 2). They were identified as 2, 8, 9, 10 and 12 by comparison of chromatographic data-as well as uv, nmr and mass spectra of authentic specimens (Table 1, Figure 3). Reference compounds 2 and 9 were prepared by aminolysis of the corresponding N-methyl-2-methylthio-4-pyrimidinones. 4 accounts for the formation of 1,3-dimethyluracil (8). Dimroth rearrangement with cleavage between positions 3 and 4 and recyclization involving the incipient primary amino group gives rise to 9 which is amenable to hydrolysis to produce 10. Alternatively, covalent hydration (12) of 4 forms the carbinolamine 11, and a subsequent Dimroth rearrangement with cleavage between positions 5 and 6, recyclization with the primary amino group and dehydration gives 2 which is hydrolyzed to 12.

Table 1

Chromatographic and physico-chemical data of various pyrimidines

Compound	R _f values			¹ Hnmr Chemical Shifts (δ)						
	in s	ystem 2	pK _a	Nuclear N-CH ₃	N-CH ₃	H-5	H-6	J _{5,6} (Hz)	NH	Reference
1	0.46	0.73	4.40	3.26		5.59 (d)	7.52 (d)	6.5	7.10 (2)	2.3
2	0.47	0.78	4.21 ± 0.05	3.24	2.81 (d) J = $4.5 Hz$	5.60 (d)	7.58 (d)	6.5	7.10	-
3	0.51	0.78	3.53 ± 0.05	3.35	2.84 (2)	5.90 (d)	7.68 (d)	6.5	-	4
4	0.17	0.69	7.40 ± 0.1	3.14, 3.25	•	5.25 (d)	7.95 (d)	8	6.28	-
5	0.70	0.79		3.57, 3.65	-	6.06 (d)	7.94 (d)	8	-	8
6	0.80	0.82		3.69, 4.14	-	6.87 (d)	7.79 (d)	7	-	1,10
7	0.69	0.78		3.36, 3.63	-	6.45 (d)	7.59 (d)	7.5	-	9
8	0.55	0.75		3.15, 3.29	-	5.63 (d)	7.66 (d)	8	-	11
9	0.25	0.50	3.70 ± 0.05	3.34	2.75	5.46 (d)	7.36 (d)	7.5	7.05	-
10	0.48	0.57		3.21	-	5.51 (d)	7.59 (d)	8	11.16	7,11
12	0.63	0.68		3.11	-	5.58 (d)	7.41 (d)	8	11.01	7,11

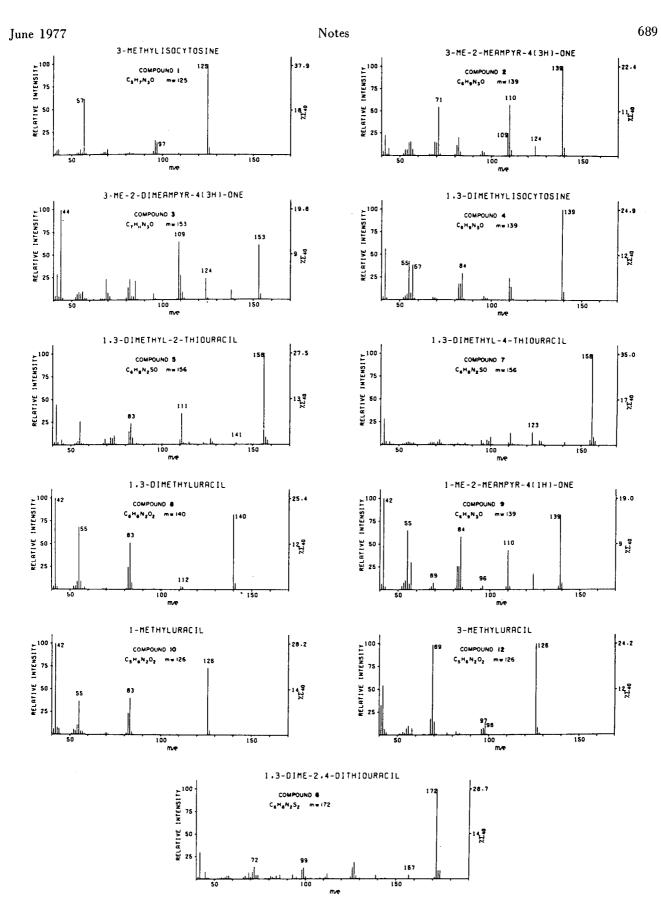


Figure 3. Mass Spectra of Various Pyrimidines

EXPERIMENTAL

Melting points were determined on a Reichert Thermopan hot stage and are uncorrected. Nmr spectra were recorded on a Varian HA-100 spectrometer using deuteriodimethylsulfoxide as solvent and tetramethylsilane as internal reference. Uv spectra were obtained on a Cary 14 spectrophotometer in aqueous solutions and apparent dissociation constants were computed from uv spectral data at different pH values at ionic strength of buffers of 0.01 (13). Mass spectra were recorded on a Varian MAT Model CH5 spectrometer operating at 70 eV with ion-source temperature of 250°. Tlc was carried out with silica gel G-F254 plates (E. Merck, Darmstadt) using solvent systems 1 (1-butanolacetic acid-water, 4:1:1, v/v), 2 (2-propanol-concentrated ammonium hydroxide-water, 8:1:1, v/v) and 3 (chloroform-2-propanol, 9:1, v/v). For analysis, a layer thickness of 0.25 mm and for preparative runs a thickness of 2.5 mm was employed.

3-Methyl-2-methylamino-4(3H)pyrimidinone (2).

A solution of 3-methyl-2-methylthio-4(3H)pyrimidinone (7) (7.0 g., 44.8 mmoles) in ca. 25 ml. of methylamine was kept in a sealed glass tube for 4 days. The clear solution was allowed to evaporate to dryness, and the crystalline residue was dissolved in hot 2-propanol, filtered, concentrated to a thin oil, and diluted with an equal volume of benzene and ca. 80 ml. of ether to give colorless needles of 2 (6.2 g., 44.6 mmoles, 99%), m.p. $101-102^{\circ}$; λ max $(\epsilon \cdot 10^{-3})$: 215 (sh., 10.63) and 259 (6.48) in 0.1 N hydrochloric acid; 224 (7.15) and 288 (9.25) in pH 7.0 buffer; 224 (7.90) and 288 nm (10.0) in 0.1 N potassium hydroxide. Anal. Calcd. for $C_6H_9N_3O$ (139.16): C_7 , 51.79; C_7 , C_7 ,

N, 30.20. Found: C, 52.00; H, 6.61; N, 30.45. 3-Methyl-2-dimethylamino-4(3H)pyrimidinone (3).

A suspension of 3-methyl-2-methylthio-4(3H)pyrimidinone (1.87 g., 12 mmoles) in dimethylamine (5 ml.) at 78° was diluted with methanol (2 ml.) and the mixture kept at 46° for 5 days. The solvents were evaporated, and the crystalline residue was redissolved in ethanol (5 ml.), the solution diluted with benzene (5 ml.) and concentrated to a volume of ca. 4 ml. Addition of ether resulted in crystallization of 3 as large plates (900 mg., 5.9 mmoles, 49%) which were recrystallized from ethyl acetate-ether-hexane, m.p. 95°; λ max (ϵ ·10⁻³): 207 (15.12), 233 (9.75) and 268 (7.82) in 0.1 N hydrochloric acid; 201 (12.10), 237 (6.70) and 298 (10.05) in pH 7.0 buffer; 238 (6.62) and 298 nm (10.25) in 0.1 N potassium hydroxide. Additional 3 could be obtained from the original mother liquor by fractional crystallization.

Anal. Calcd. for $C_7H_{1\,1}N_3O$ (153.19): C, 54.89; H, 7.24; N, 27.43. Found: C, 54.84; H, 7.40; N, 27.38.

1,3-Dimethyl-1,2-dihydro-2-imino-4(3H)pyrimidinone (4).

A solution of 1(2) (1.5 g., 12 mmoles) in methanol (25 ml.) and iodomethane (50 ml.) was heated for 24 hours under reflux under exclusion of moisture. The crystalline 4 hydroiodide (2.2 g., 8.2 mmoles, 68%) was collected and washed with small amounts of methanol, 2-propanol and ether. Prolonged treatment of the filtrate with additional iodomethane and silver oxide failed to yield additional 4. The hydroiodide was recrystallized from methanol-2-propanol to give colorless needles, m.p. 262-263° dec.; λ max ($\epsilon \cdot 10^{-3}$): 223 (20.70) and 260 (7.45) in 0.1 N hydrochloric acid; 223 (23.50) and 263 (6.20) in pH 7 buffer; 222 (29.75) and 284 nm (6.15) in 0.1 N potassium hydroxide.

Anal. Calcd. for $C_6H_9N_3O \cdot HI$ (267.07): C, 26.99; H, 3.77; N, 15.73. Found: C, 26.77; H, 3.90; N, 15.60.

An aqueous solution of 4 hydroiodide (2.2 g.) was passed through a column of Dowex 1-X4 (OH, 50 ml., 100-200 mesh),

the basic effluent and water washes combined and concentrated to dryness, and the residue redissolved in hot ethyl acetate and diluted with ether and petroleum ether to give 4 as clusters of prisms (965 mg., 6.9 mmoles, 84%), m.p. 139-140°; λ max (ϵ *10-3): 217 (7.90) and 261 (7.25) in 0.1 N hydrochloric acid; 218 (12.10) and 265 (5.42) in pH 7 buffer; 220 (16.85) and 284 nm (6.00) in 0.1 N potassium hydroxide.

Anal. Calcd. for $C_6H_9N_3O$ (139.16): C, 51.79; H, 6.52; N, 30.20. Found: C, 51.67; H, 6.55; N, 30.34.

Degradation of 1,3-Dimethyl-1,2-dihydro-2-imino-4(3H)pyrimidinone (4).

A solution of 4 (400 mg.) in saturated barium hydroxide (20 ml.) was heated on the steam bath for 2 hours. The solution was neutralized with carbon dioxide, and the suspension diluted with methanol and filtered. The filtrate was concentrated to dryness to yield a crystalline mixture of 2, 8, 9, 10 and 12. Components 2 and 9 predominated and 8 was the minor component. All 5 components could be separated preparatively by tlc on silica gel G by a combination of systems 1 and 2 (Table 1); the bands were eluted with chloroform-methanol mixtures.

1,2Dihydro-1,3-dimethyl-2thio-4(3H)pyrimidinone (1,3-Dimethyl-2-thiouracil, 5) and 1,3-Dimethyl-2,4-(1H,3H)pyrimidinedithione (1,3-Dimethyl-2,4-dithiouracil, 6).

A mixture of 4(80 mg.) and phosphorus pentasulfide (300 mg.) in pyridine (4 ml.) was heated on the steam bath under exclusion of moisture for 3 hours. The solution was diluted with toluene (5 ml.), filtered, and the residue extracted twice with hot toluene. The combined filtrate and extracts were concentrated to small volume and chromatographed on a preparative layer with system 3. The major band (R_f 0.6) was eluted with acetone; the resulting residue was crystallized from ethyl acetate-heptane to give 15 mg. of colorless needles of 5(8) with m.p. 108-109°.

Anal. Calcd. for $C_6H_8N_2OS$ (156.20): C, 46.14; H, 5.16; N, 17.94. Found: C, 46.01; H, 5.18; N, 17.85.

The minor band (R_f 0.8) was eluted with chloroform, and the residue crystallized from aqueous methanol furnishing yellow needles of 6(9,10) with m.p. 124° (5 mg.).

Anal. Calcd. for $C_6H_8N_2S_2$ (172.14): S, 37.25. Found: S, 37.01.

2-Methylamino-1-methyl-4(1H)pyrimidinone (9).

1-Methyl-2-methylthio-4(1H)pyrimidinone (1.0 g., 6.4 mmoles) (7) was suspended in methylamine (ca. 15 ml.) in a sealed glass tube and kept at ca. 65° for one week. The tube content was allowed to evaporate to dryness and the crystalline residue recrystallized from ethanol-2-propanol and 2-propanol-ethyl acetate (0.73 g., 5.2 mmoles, 82%), m.p. 200-201°; λ max (ϵ ·10⁻³): 221 (11.30) and 267 (7.45) in 0.1 N hydrochloric acid; 208 (23.35) and 266 (4.35) in pH 7.0 buffer; 266 nm (4.75) in 0.1 N potassium hydroxide.

Anal. Calcd. for C₆H₉N₃O (139.16): C, 51.79; H, 6.52; N, 30.20. Found: C, 51.81; H, 6.61; N, 30.31.

Acknowledgement.

We thank Dr. W. Benz for mass spectra, Dr. W. H. Williams for nmr spectra and Dr. J. T. Plati for discussions.

REFERENCES AND NOTES

- (1) Previous paper in this series: H. Maehr, M. Leach and V. Toome, J. Heterocyclic Chem., 9, 1389 (1972).
- (2) R. B. Angier and W. V. Curran, J. Org. Chem., 26, 1891 (1961).

- (3) D. J. Brown and N. W. Jacobsen, J. Chem. Soc., 3172 (1962). Note: D. J. Brown uses two different numbering systems for the pyrimidine nucleus.
- (4a) D. J. Brown and T. Teitei, Austr. J. Chem., 18, 199 (1965); (b) 18, 559 (1965).
- (5) D. D. Perrin, "Dissociation Constants of Organic Bases in Aqueous Solutions", Butterworths, London 1965; Supplement 1972, and references cited therein.
- (6) R. Wagner and W. von Philipsborn, Helv. Chim. Acta, 53, 299 (1970).
- (7) D. J. Brown, E. Hoerger and S. F. Mason, J. Chem. Soc., 211 (1955).

- (8) R. N. Warrener and E. N. Cain, Chem. Ind. (London), 1989 (1964).
- (9) G. B. Elion and G. H. Hitchings, J. Am. Chem. Soc., 69, 2138 (1947).
 - (10) D. J. Brown and J. S. Harper, J. Chem. Soc., 1298 (1961).
- (11) D. Shugar and J. J. Fox, Biochem. Biophys. Acta, 9, 199 (1952).
- (12) D. D. Perrin and I. H. Pitman, J. Chem. Soc. (C); 7071 (1965).
- (13) A. Albert and E. P. Serjeant, "The Determination of Ionization Constants", Chapman and Hall Ltd., London, 1971.